### TOWARD A WATERSHED MODEL FOR CLEAR LAKE



**Blue Ribbon Committee Meeting** Sept. 26, 2019



A <u>distributed</u> watershed model is a computer model that uses sets of mathematical equations to:

- 1. Simulate hydrologic processes (movement of water) across and through the landscape
- 2. The accompanying erosion and sediment transport that may occur due to steepness, lack of cover, imperviousness, type of land use etc.
- 3. The accompanying nutrient transport, uptake and release that is occurring due to different activities, soils, reactions etc.





### STEP 1 - Subwatershed Delineation

- Subdivision of the watershed into discrete components
- Delineation based on:
  - elevation (topographic data)
  - stream connectivity
  - location of flow and water quality monitoring stations
- Each subwatershed is modeled with 1 representative stream
- Each subwatershed is modeled with 1 representative meteorological time series

## Sub-watershed Delineation

This is provided by the Lidar data from which a Digital Elevation Model (DEM) has likely been produced already





The Use of Sub-Watersheds is What Makes it a <u>Distributed</u> Watershed Model



## **Step 2 - Land Use Classifications**

This is provided by existing GIS layers, high resolution satellite data, Lidar data etc.



## LIDAR



LiDAR is a remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light.



LiDAR Point Cloud (all LiDAR points)



Bare Earth (LiDAR ground points)

## "Satellite Survey"

#### Countless uses of satellite data

- Weather (from past data) for watershed model?
- Water temperature - climate change, lake water movement etc.
- Algal blooms (cyano and general)



# Step 3 – Determining erosion potential

This is based on GIS layers of soil types, ground slope, coverage etc. Produces erodibility classes



## **Step 4 - Watershed Model Land-use Categories**

| Landuse Category          | Pervious/Impervious | Subcategory Name      |
|---------------------------|---------------------|-----------------------|
| Single Family Residential | Pervious            | SFR - Pervious        |
|                           | Impervious          | SFR - Impervious      |
| Multi Family Residential  | Pervious            | MFR - Pervious        |
|                           | Impervious          | MFR - Impervious      |
| Commercial/Institutional/ | Pervious            | CICU - Pervious       |
| Communications/Utilities  | Impervious          | CICU - Impervious     |
| Transportation            | Impervious          | Primary Roads         |
|                           | Impervious          | Secondary Roads       |
|                           | Pervious            | Unpaved Roads         |
| Vegetated                 | Pervious            | Ski Runs              |
|                           | Pervious            | Recreation            |
|                           | Pervious            | Burned                |
|                           | Pervious            | Harvest               |
|                           | Pervious            | Turf Areas            |
|                           | Pervious            | Erosion Potential - 1 |
|                           | Pervious            | Erosion Potential - 2 |
|                           | Pervious            | Erosion Potential - 3 |
|                           | Pervious            | Erosion Potential - 4 |
|                           | Pervious            | Erosion Potential - 5 |

Step 5 - Meteorology – this is what "drives" the model







## **Step 6 - Calibration and Validation**

- This is the hard part.
- Need at least 1 year of meteorological data to "input" to the model for "calibration", and at least 1 year to "validate" the model performance.
- Calibration adjust individual coefficients for erosion, nutrient release etc. so that data from gauging stations match the measured values. TOC
- Validation change nothing, confirm that model can represent a different set of data
- If insufficient or poor stream data, the results are of dubious value GIGO





## **Output - Fine Sediment Loads**









THIRD CREEK

INCLINE CREEK



5000 - 10000 10000 - 24115